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[1] Quantification of precipitation extremes is important for flood planning purposes,
and a common measure of extreme events is the T year return level. Extreme precipitation
depths in Belgium are analyzed for accumulation durations ranging from 10 min to
30 days. Spatial generalized extreme value (GEV) models are presented by considering
multisite data and relating GEV parameters to geographical/climatological covariates
through a common regression relationship. Methods of combining data from several sites
are in common use, and in such cases, there is likely to be nonnegligible intersite
dependence. However, parameter estimation in GEV models is generally done with the
maximum likelihood estimation method (MLE) that assumes independence. Estimates of
uncertainty are adjusted for spatial dependence using methodologies proposed earlier.
Consistency of GEV distributions for various durations is obtained by fitting a smooth
function to the preliminary estimations of the shape parameter. Model quality has been
assessed by various statistical tests and indicates the relevance of our approach. In addition,
a methodology is applied to account for the fact that measurements have been made in
fixed intervals (usually 09:00 UTC–09:00 UTC). The distribution of the annual sliding
24 h maxima was specified through extremal indices of a more than 110 year time series of
24 h aggregated 10 min rainfall and daily rainfall. Finally, the selected models are used
for producing maps of precipitation return levels.
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1. Introduction

[2] Extreme rainfall events have a large impact on society
and can lead to loss of life and property, for example, by
causing land slides or flooding due to dike breach or dam
failures. Think for instance of the recent flood of November
2010 where the total damage in Belgium was estimated
on 180 million euro. There are many situations in water
resources systems in which the statistics of extremes plays a
decisive role. Rainfall intensity patterns for various return
periods are required for designing hydraulic structures or for
flood mapping and zoning. Knowledge of the temporal and
spatial distribution of these extreme events is thus of great
practical importance. Extreme value theory is the branch of
probability and statistics dedicated to characterizing the
behavior of extreme observations. There are many excellent
textbooks on this subject including those by Leadbetter et al.
[1983] and Embrechts et al. [1997] which give a compre-
hensive mathematical background of the theory, and those
by Coles [2001] and Beirlant et al. [2004] which focuses on
applications and data analysis. The theory has been widely
used in hydrology [Jenkinson, 1955; Sneyers, 1960; Katz
et al., 2002; El Adlouni et al., 2007; Ntegeka and Willems,
2008; Blanchet et al., 2009; Overeem et al., 2009; Ailliot

et al., 2011] and other environmental sciences and finance
as well.
[3] The generalized extreme value (GEV) distribution has

been used in many studies and often provides a good fit to
extreme rainfall maxima. It is well recognized that a satisfac-
tory fit of the GEV distribution to a single record does not
guarantee good estimates of large return period events. More
data are required to get a reliable description of the extreme
upper tail. The need for more data can be fulfilled by combin-
ing several data sets under a GEV model which assumes that
one or more parameters are either common to all the locations
or are related to covariates through a common regression rela-
tionship. An overview of early methods for regional frequency
estimation is given by Buishand [1991]. One of the best known
methodologies is the so-called regional index flood estimation
[Cunnane, 1973;Hosking andWallis, 1997], which is based on
the hypothesis that data at different sites in the region follow the
same distribution except for scale (index flood). However,
most of these methods are based on the assumption of spatial
independence, a condition which is usually not met in practical
applications. This problem has been recognized, but for a long
time no clear-cut solution has emerged. Buishand [1984]
modeled explicitly spatial dependence based on bivariate
GEV distributions. In recent years, there is a growing interest in
spatial modeling of multivariate extremes based on maximum-
stable processes [Schlater, 2002; R. L. Smith, Max-stable pro-
cesses and spatial extremes, unpublished manuscript, 1990a],
and exhaustive R packages on this topic have already been
developed [Ribatet, 2011]. However, multivariate method-
ologies cannot address the problem if interest is in the mar-
ginal distribution. A satisfying approach to obtain maximum
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likelihood estimates in regional GEV models under the arti-
ficial assumption that the series are independent has been
formulated by R. L. Smith (Regional estimation from spa-
tially dependent data, unpublished manuscript, 1990b). The
likelihood function was constructed as if the sites were
independent, but the error estimation and likelihood ratio test
were adjusted to account for spatial correlation. Recent
developments of spatial modeling in a Bayesian framework
are given by Cooley et al. [2007]. All the above mentioned
methodologies are based on direct estimation of the spatial
extreme value distribution. Another important class, which is
not the subject of this paper, is based on spatial interpolation
of individual estimations. A comparative study of these two
main approaches has been made by Blanchet and Lehning
[2010].
[4] The spatial distribution of extreme precipitation in

Belgium is analyzed by regression modeling and highlight-
ing the regional variabilities. Although, studies on extreme
precipitation in Belgium are numerous [Sneyers, 1960;
Demarée, 1985; Buishand and Demarée, 1990; Gellens,
1995, 2000, 2002, 2003; Willems, 2000; Delbeke, 2001;
Vannitsem and Naveau, 2007; Ntegeka and Willems, 2008],
most of them are focused on single-site estimations. A great
advantage of spatial models is that they apply at any place,
even at ungauged sites.
[5] This article is organized as follows. In section 2 the

principles of extreme value theory are recalled, and spatial
extensions of the classical model are introduced. A brief data
description and homogeneity testing of series are given in
section 3. Assessment of spatial correlation and significance
of regional variability of GEV parameters can be found in
section 4. Spatial regression modeling of extremes based on
multisite precipitation data is carried out in section 5. In
addition, the models obtained are extensively validated.
Section 6 is devoted to transforming the GEV parameters of
daily (sampled at 09:00 UTC) maximum rainfall to those of
24 h (i.e., sampled at arbitrary time) maximum rainfall.
Finally, in section 7, some conclusions are drawn.

2. Statistical Theory of Extreme Values

[6] The use of extreme value models is increasingly
common in climate studies. These models are concerned
with the statistical behavior of block maxima, i.e.,

Mm ¼ max X1;…;Xmf g; ð1Þ

where X1, …, Xm is a sequence of independent and identi-
cally distributed (iid) random variables. In practice, X1, …,
Xm is, for instance, a time series of daily precipitation.
Pragmatic considerations often led to the adoption of blocks
of length 1 year.

2.1. Classical GEV Model

[7] Classical extreme value analysis is based on the
assumption that X1, …, Xm is a sequence of iid random
variables. A key result is that in such a case the cumulative
distribution of the normalized maxima converges to the
generalized extreme value (GEV) distribution asm→∞, i.e.,

lim
m→∞

Pr Mm � bmð Þ=am ≤ yf g → Gg yð Þ; ð2Þ

where the GEV distribution is of the form

Gg yð Þ ¼ exp � 1þ gyð Þ�1=g
h i

; if 1þ gy > 0: ð3Þ

Here g is called the shape parameter and governs how rapidly
the upper tail decays. It is a key quantity in the whole of
extreme value analysis. Note that the shape parameter k =�g
is often used in the hydrological literature. For notational
convenience, denote the maximum of a sample X1, …, Xm

by Z. Then, for sufficiently large m the distribution of Z can
be approximated by the three-parameter GEV distribution,
Z � GEV(m, s, g), with

G z;m;s; gð Þ ¼ exp � 1þ g
z� m
s

� ��1=g
� �

;

if 1þ g
z� m
s

> 0; ð4Þ

where m and s > 0 are the asymptotic normalization para-
meters. They are called the location and the scale parameter,
respectively. To be more precise, the location parameter spe-
cifies the center of the distribution, and the scale parameter
determines the size of deviations about the location parameter.
[8] The return level z(T) is defined as a value which, on

average, is exceeded once in T years. This is obtained by
inverting equation (4):

z Tð Þ ¼ m� s
g

1� �log 1� 1

T

� �� ��g� 	
: ð5Þ

T is usually referred to as the return time.
[9] In case g ≠ 0, the log likelihood function for a sample

Z1, …, Zn of iid GEV random variables is

l yð Þ ¼ �n log s �
Xn
i¼1

1þ g
Zi � m

s

� ��1=g

� 1þ 1

g

� �Xn
i¼1

log 1þ g
Zi � m

s

� �
; ð6Þ

where y = (m, s, g), and provided that 1 + g Zi�m
s > 0, for

i = 1, …, n. The maximum likelihood estimator (MLE) ŷ
for y is obtained by maximizing equation (6). A great
benefit of MLE is that it has several interesting and useful
properties that lead to standard errors and confidence
intervals. The main result is that MLE is unbiased and
asymptotically normally distributed under the regularity
condition g > �0.5 [Smith, 1985]. The case g ≤ �0.5
corresponds to very light tailed distributions, but this sit-
uation is rarely seen in practical applications.

2.2. Spatial GEV Model

[10] Let Z(x) denote the total precipitation for a given
period of time d, and at location x (expressed in longitude/
latitude, or other geographic coordinates). Hereafter, call d
the aggregation level or rainfall duration. The goal is to
provide inference for the probability P{Z(x) < z} for all
locations x within a certain region (in our case Belgium). The
spatial GEV model is defined as Z(x) � GEV[m(x), s(x),
g(x)], where the parameters characterizes the extreme pre-
cipitation and are possibly related to climatological and
orographic effects. Let the response Zij be the annual maxima
at site i {1, …, ns} in year j ∈ {1, …, ni}, and xi being the
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coordinate of the ith site. If the responses are independent, the
log likelihood of the spatial stationary GEV model is

l yð Þ ¼ �
Xns
i¼1

Xni
j¼1

"
log s xið Þ þ 1þ g xið ÞZij � m xið Þ

s xið Þ
� ��1=g xið Þ

þ 1þ 1

g xið Þ
� �

log
Zij � m xið Þ

s xið Þ
� �#

; ð7Þ

where y is a vector of parameters that relates the GEV
parameters m(x), s(x), g(x) to the covariates. Regularity
conditions for standard asymptotic likelihood results are not
known for spatial GEV models. Just like in the single-site
case, one assumes that violation of regularity conditions is
rarely encountered in environmental modeling, albeit one has
to be aware of this potential problem.
[11] For clarification some examples are provided that

will be examined later in this study. Denote by H(x) the
altitude of location x, and propose the following three nested
models GEV0 � GEV10

(alt) � GEV11
(alt):

[12] 1. GEV0 defined by y = (m0, s0, g0) is the classical
model with all parameters being constant:

m xð Þ ¼ m0; s xð Þ ¼ s0; g xð Þ ¼ g0: ð8Þ

[13] 2. GEV10
(alt) defined by y = (m0, s0, g0, m1) is the

model with location parameter linearly dependent on the
altitude:

m xð Þ ¼ m0 þ m1H xð Þ; s xð Þ ¼ s0; g xð Þ ¼ g0: ð9Þ

[14] 3. GEV11
(alt) defined by y = (m0, s0, g0, m1, s1) is the

model with location and scale parameters linearly dependent
on the altitude:

m xð Þ ¼ m0 þ m1H xð Þ; s xð Þ ¼ s0 þ s1H xð Þ; g xð Þ ¼ g0:

ð10Þ

[15] In environmental sciences, there are numerous papers
devoted to the inclusion of covariates in parameters of
extreme value distributions. Most of them are concerned
with modeling nonstationarity or temporal dependence, and
use covariates such as time, indices of large-scale atmo-
spheric processes or seasonal effects [Smith, 1989; Coles,
2001; Katz et al., 2002; El Adlouni et al., 2007].

2.3. Adjusting for Spatial Dependence

2.3.1. Error Estimation
[16] Maximum likelihood estimation is based on the

assumption of independence among series. The asymptotic
properties of the independence MLE are well known, but
however, this is not the true model, especially when the station
network is dense. A solution to account for the dependence is
ignoring the dependence initially, thus working with MLE
under misspecification, and then making adjustments to esti-
mates of parameter uncertainty [Davison, 2003; R. L. Smith,
unpublished manuscript, 1990b]. More precisely, one has

ŷ→N y0; I y0ð Þ�1V y0ð Þ I y0ð Þ�1
� �

; as m → ∞; ð11Þ

where y0 is the vector of true parameters, V(y0) =
cov[rl(y0)], and I(y0) the Fisher information matrix. If the

assumed model was correct (i.e., the series are independent),
one would have I = V and the classical approximation is
recovered.
[17] Suppose that the series contributing to l(y) are not

independent, but the contributions hi from the separate years
are. Writing rl(y) = Si rhi(y) expresses as a sum of n
independent terms. Then one gets (R. L. Smith, unpublished
manuscript, 1990b)

V y0ð Þ ¼ n cov rhi y0ð Þ½ �; ð12Þ

which can be approximated using the empirical covariance
matrix of the observed rhi(ŷ).
2.3.2. Model Selection
[18] Having two different models in mind, one wants to

know which one should be preferred for modeling our data.
If two models have the same maximized log likelihoods, one
should prefer the one with fewer parameters because it will
have a smaller variance. However, if only a small increase in
maximized log likelihoods is found, it remains to be seen
whether this small increase is worth the price of having
additional parameters, and hence a larger variance. A com-
monly used test statistic is the Akaike information criterion
(AIC). However, when working with spatial correlated data,
the AIC is not appropriate. An extension of the AIC that
accounts for misspecification is the Takeuchi Information
Criterion (TIC), defined as

TIC ¼ �2lðŷÞ þ 2Tr IðŷÞ�1V ðŷÞ
h i

; ð13Þ

where l(ŷ) is the approximate likelihood from equation (7),
I(ŷ) and V(ŷ) are as before. It was recently rederived by
Varin and Vidoni [2005]. The best model will be that having
the lowest value of TIC. If the assumed model was correct,
the classical AIC is recovered.

3. Precipitation Data

[19] Two different networks covering the Belgian territory
are currently available, the climatological and hydrometeo-
rological network. The former is based on daily measure-
ments of temperature, precipitation, pressure, etc.; while the
second is aimed at evaluating precipitation, temperature and
humidity at a much higher rate (every 10 min) in order to
compute quantities relevant for hydrological modeling like
fast runoffs. Measurements provided by both networks have
been extensively used for climatological analysis [Sneyers,
1960, 1975; Sneyers et al., 1989; Demarée, 1985; Dupriez
and Demarée, 1988, 1989; Gellens, 1995, 2000, 2002, 2003;
Delbeke, 2001;Willems, 2000; Vannitsem and Naveau, 2007;
Ntegeka and Willems, 2008].
[20] In our study, k-daily precipitation is obtained by

aggregation of daily measurements of the climatological
network. Total precipitation amounts over a period shorter
than (or equal to) 24 h are obtained by aggregation of 10 min
data of the hydrometeorological network.

3.1. The Climatological Network

[21] The climatological network started to operate in
1833. At that time it was based on a few key stations, and it
is nowadays composed with more than 650 stations. During
its long existence, this network has experienced several
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changes such as displacements and withdrawals of stations.
To work with an homogeneous network, a subset of stations
has been selected covering a common period from 1951 up
to present without substantial interruptions.

3.2. The Hydrometeorological Network

[22] A Hellmann-Fuess pluviograph was installed at the
climatological station of the Royal Meteorological Institute
of Belgium at Uccle in 1898, and is continued to date
[Demarée, 2003]. The series is recorded by the same instru-
ment at the same location since 1898 and processed with
identical quality since that time. The measuring frequency is
unique as well: 10 min with more than 110 years of contin-
uous data. In 1968, 18 additional pluviographs were installed,
providing a spatial coverage of the country for hydrological
purposes. This network is less dense than the climatological
one and some stations display long periods with missing data.
These series ended at 2005, and the pluviographs are nowa-
days progressively replaced by automatic stations. The latter
measurements are not included in the study.

3.3. Homogeneity Testing

[23] It is often important to determine if a set of data is
homogeneous before any statistical technique is applied to it.
Homogeneous data are drawn from a single population. In
other words, all outside processes that could potentially
affect the data must remain constant. Inhomogeneities in
station data records are often caused by changes in obser-
vational routines, among which are station relocations,
changes in measuring techniques and changes in observing
practices. Without assurance of homogeneity, parameter
estimates will be unreliable. For this reason, the series are
statistically tested with respect to homogeneity. The two-
step approach of Wijngaard et al. [2003] includes, first, four
homogeneity tests, and secondly, on the basis of these tests

the series are grouped in an overall classification of reli-
ability: “useful,” “doubtful” and “suspect.” All the series of
the climatological network that contain 60 years of (more or
less) continuous data have been examined and 68 series were
assigned to the class “useful.” Likewise, the series of the
hydrometeorological network has been tested and 18 stations
are selected. Series containing some missing years were also
considered in our study, simply because 10 min measure-
ments are quite limited. Figure 1 shows the location of the
stations selected. Among the 68 stations of the climatological
network, 18 are excluded from the analysis for validation,
and thus 50 are used for inference. For reasons of scarcity of
10 min series, the 18 stations of the hydrometeorological
network are used for validation and inference as well.
[24] Besides anthropogenic influences also homogeneity

with respect to climate change needs to be assumed and
tested for. The Mann test which provides information on the
presence of tendencies, has already been applied to the
climatological network [Gellens, 2000; Vannitsem and
Naveau, 2007]. Their analysis reveals that the vast major-
ity of the time series recorded for summer are stationary. For
winter, the results are different: about 2/3 of the stations are
nonstationary at the 5% level. For operational purposes,
statistical practitioners use stationary models notwithstand-
ing that climatic series are known to be nonstationary. Of
course, one can criticize that, but one should take in mind
that there is simply no alternative.

4. Spatial Variation of GEV Parameters

[25] In this section, the regional variability in the GEV
parameters is tested. Denote one of the classical GEV para-
meters by j. Let ji be the parameter at the ith site, ĵ i its
MLE. Under the assumption that annual maxima are spa-
tially independent, the null hypothesis j1 = j2 = … = jns ≡

Figure 1. Elevation map (m) of Belgium, together with the location of the climatological stations (black
dots, calibration stations; red dots, validation stations) and hydrometeorological (crosses) stations.
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j can be tested with the statistic [Buishand et al., 2009;
Overeem et al., 2008]

X 2 ¼
Xns
i¼1

ĵ i � �jwð Þ2=s2 jið Þ; ð14Þ

with �jw the weighted average of the �j i’s, relative to the
record length, and s2(ji) the variance of MLE. Spatial
dependency of annual maxima of the 18 hydrometeorologi-
cal stations can be neglected for short durations. Cross cor-
relations become apparent from d = 6 h. Next, X2 was
calculated for d = 10, 20, 30, 60 and 120 min. Under the null
hypothesis, the statistic X2 has a c2 distribution with ns � 1
degrees of freedom. From Table 1 it can be seen that there is
a strong evidence for regional variability in the location
parameter m. In contrast, the shape parameter g is likely to be
constant over the different sites since X2 values are far below
the 5% critical value. It was difficult to conclude the vari-
ability in the scale parameter s with high confidence because
X2 is fluctuating around this critical value.
[26] For larger durations, a technical difficulty with testing

for regional differences in the GEV parameters is that the
estimates are spatially correlated due to the spatial correla-
tion of annual rainfall maxima. In the presence of spatial
dependence, the statistic in equation (14) can be extended to
[Witter, 1984]

X 2 ¼ ĵ � �jweð ÞTC�1 ĵ � �jweð Þ; ð15Þ

with �jw the generalized least squares estimate of j

�jw ¼ eTC�1ĵ
eTC�1e

; ð16Þ

where C is the covariance matrix of ĵ = (ĵ1,…, ĵns)
T, and e

is a vector with ns ones. Under the null hypothesis one has
X2 � cns�1

2 . The elements of C are obtained with a boot-
strapping procedure that accounts for spatial correlation. A
bootstrap sample is constructed by resampling years 1951–
2010 with replacement and thus consists of 60 years times
68 annual maxima. Remark that spatial correlations are not
preserved if annual maxima series were resampled from each
individual station. From each bootstrap ji (i = 1, …, ns) is
reestimated by MLE. Spatial correlations between ĵi and ĵj

are then estimated from 104 bootstrap samples. Only k-daily
extremes were considered here since the number of 10 min
series (i.e., 18) is clearly too low, and their length is too short
for the present analysis. From 68 stations one can form 4556
pairs for which the correlation coefficient can be computed.
These estimations exhibit large variability as can be seen
from Figures 2 and 3 for d = 1 day and 10 days. However,
when testing for regional differences with equation (15), it is

not allowed to introduce such highly variable estimations in
C. Indeed, the use of the c2 distribution in the test assumes
that C is known in advance; C can be possibly replaced by
an estimated covariance matrix provided that the estimation

Table 1. Values of X2 Statistic in Equation (14) for Testing
Regional Differences in the GEV Parametersa

d (min)

10 20 30 60 120

m 52.4 51.4 37.1 29.9 31.0
s 26.9 25.5 28.3 31.2 27.0
g 22.0 8.8 14.9 16.2 14.7

aRecall that P{c17
2 ≤ 27.59} = 0.95.

Figure 2. Correlation between GEV parameters as a func-
tion of the distance for d = 1 day.
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variance is small. This is obtained by fitting a suitable model
to the computed correlations. The following exponential
model is commonly used [Buishand et al., 2009; Overeem
et al., 2009]

r hð Þ ¼ exp � h

h0

� �a� �
; ð17Þ

where r(h) is the correlation at the intersite distance h (km),
h0 (km) a scale parameter and a a shape parameter. The
parameters a and h0 are estimated based on the modified
least squares method that is fully described by Buishand
et al. [2009, Appendix 3]. The model gives a reasonable
description of the decay of r with intersite distance, as can
be seen in Figures 2 and 3. Here is a < 1, which means that
the correlation decays slower than the exponential function.
For h = h0, one has r = e�1 ≈ 0.37. According to Belgian
studies included by Gellens [2000] and Vannitsem and
Naveau [2007], there is an increasing dependency for
growing aggregation levels. Short-duration rainfall extremes
are usually associated with convective thunderstorm activi-
ties. On the other hand, long-duration extremes can be linked
with large-scale atmospheric situations and thus exhibit
higher intersite correlations over long distances, which is
confirmed by the larger values of h0 in Figure 3 compared to
Figure 2.
[27] Now, the covariances in C can be calculated by

multiplying the variance on the main diagonal with the
modeled correlation coefficient in equation (17). The
resulting X2 values, listed in Table 2, indicate that there is a
strong evidence for spatial differences in the location
parameter m. Also the scale parameter s is subject to spatial
differences, but it is less significant. Finally, variations in the
shape parameter g are not statistically significant, and will
be kept constant in our modeling approach (section 5).

5. Modeling of Extreme Rainfall

5.1. Study Region and Selection of Covariates

[28] Roughly speaking, the study area has two different
subregions. In the north part of Belgium there are plains
which belong to the coastal region of the North Sea. The
southern section is formed by the plateau of the Ardennes
where mountain heights range from 400 to almost 610 m. To
produce return level maps, one has to specify GEV models
over continuous space, as explained in section 2.2. The
foregoing study suggests to model spatial variability through
the location and scale parameters, i.e., m(x) and s(x), and
keeping the shape parameter constant, g(x) = g. The first
question to be answered is which are the best possible
choices for the covariates. Geographically coordinates (lon-
gitude, latitude, altitude) are readily available in the form of

Figure 3. Correlation between GEV parameters as a func-
tion of the distance for d = 10 days.

Table 2. Values of X2 Statistic in Equation (15) for Testing
Regional Differences in the GEV Parametersa

d (days)

1 2 3 4 5 7 10 15 20 25 30

m 256 342 398 447 503 663 703 838 869 1071 1201
s 95 93 129 108 134 133 126 139 124 115 110
g 69 63 61 67 73 70 70 45 62 65 76

aRecall that P{c67
2 ≤ 87.11} = 0.95.
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digital terrain models, and are commonly used in spatial
regression studies [Blanchet and Lehning, 2010; Cooley
et al., 2007; Northrop and Jonathan, 2011]. In addition,
distance from the sea is also a useful covariate to assist the
mapping of extreme rainfall [Faulkner and Prudhomme,
2007]. Beside, there are several other possibilities proposed
in the literature. For example, Weisse and Bois [2001] have
explained the characteristics of heavy rains in the French
Alps by detailed topographic characterization of relief in
order to map rainfall risks. The above mentioned variables
are known as geographical covariates. Another important
class consists of climatological covariates which link the
regional variability of extremes with climatological patterns
[Blanchet and Lehning, 2010; Cooley et al., 2007]. The
scatterplots in Figure 4 indicate that for the location param-
eter the mean annual rainfall (MAR) is even more informa-
tive than elevation. In a comparative study, the following
covariates are considered in the location parameter: (1)
longitude/latitude, (2) distance to the sea, (3) elevation and
(4) MAR. Analogous to elevation-dependent models (i.e.,
equations (8)–(10)), one can introduce nested models

linearly depending on one of these covariates. In Figure 5,
model quality has been assessed by using TIC as a guide.
Here, models with covariates for m (i.e., GEV10) were con-
sidered. As expected, adding covariates to m greatly decrea-
ses TIC values, and the differences become larger for
growing aggregation levels. For durations smaller than 6 h,
TIC differences are less pronounced. In any case, it turns out
that MAR and elevation are the best choices, and further-
more, MAR outperforms the elevation as a covariate. It is
difficult to discern much of the spatial signal in the traditional
longitude/latitude space or distance to the sea, so that maps
produced by these models inadequately describe extreme
precipitation.

5.2. Parameter Inference

[29] Here, GEV models with covariates including eleva-
tion and MAR are investigated in greater detail. Denote by
GEV0 � GEV10

(mar) � GEV11
(mar) the nested models linearly

depending on MAR. The maximization of the likelihood l(y)
in equation (7) was done using the MATLAB optimization

Figure 4. Scatterplot of m (daily rainfall) for every station
against the altitude and mean annual rainfall (MAR).

Figure 5. TIC against rainfall duration. Covariates for
location parameter. (a) Short durations 10–1440 min.
(b) Long durations 1–30 days.
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algorithm fminunc. This procedure starts at an initial value
and attempts to find a local minimum of �l(y). Thousand
initial start values are randomly generated, and the estimate ŷ
with the smallest local minimum was finally kept. By using
TIC, it was found that GEV11 models are the most optimal
ones. Estimation results of g from GEV11

(alt) against the
aggregation level d are shown in Figure 6. In addition, 95%
confidence intervals are also plotted. The estimation results
of location and scale parameters are yet not shown, but first
need to be slightly modified, for reasons that will be
explained here. For all the models it was found that m(d1) <

m(d2) and s(d1) < s(d2) for two different duration times
d1 < d2. Under this circumstance it is absolutely necessary
that g(d1) ≥ g(d2). This is easily seen when plotting the
return level z(T) against T. If one had g(d1) < g(d2), then the
graphs of z1(T) of z2(T) should intersect each other at some
T, which is physically impossible. Observing Figure 6,
estimations of g are inconsistent at several places. For
example, in Figure 6b (k-daily precipitation), the highest
value of ĝ is reached at 2 days instead of 1 day. To guarantee
consistency, the estimations are smoothed by fitting the
curve

g dð Þ ¼ a� b ln dð Þ ð18Þ

to the points (di, ĝ (di)) [Buishand, 1983; Buishand et al.,
2009; Gellens, 2003]. The result of the curve fitting for the
k-daily data are listed in Table 3. The use of these modeled g
values is justified because they are included in the 95%
confidence intervals from the original raw estimations (see
Figure 6). For low aggregation levels (Figure 6a), it can be
seen that there is no remarkably variability in ĝ, except for
d = 30 min and 1440 min. Note that for short durations,
some other regression relations, different from equation (18),
are known in the literature. In a similar study for the
Netherlands, one has simply put g = 0.09 [Buishand and
Wijngaard, 2007]. On the other hand, Gellens [2003] pro-
posed a linear relationship between g and d but anyhow, the
mean value agrees very well with g = 0.09. Despite the fact
that the same data are used, our study reveals that the mean
value equals 0.125, a difference that could be explained
because the L moment estimator was used byGellens [2003].
In order to be consequent select the same type of model as for
daily data; fitting results are again listed in Table 3. Consis-
tency between models for short and long durations can be
observed from Figure 6 because equation (18) evaluated at
d = 1 day (Figure 6b) is included in the 95% confidence
interval of g of 24 h extremes obtained from 10 min data
(Figure 6a), and vice versa. The additional g estimations for
GEV11

(mar) in Table 3 show a fairly small difference with
those of GEV11

(alt).
[30] Next, for each aggregation level the modeled g value

(see Table 3) is introduced in the log likelihood in equation (7),
and the remaining parameters are reestimated. The complete
output is recorded in Tables A1–A4 of Appendix A. Including
covariates to s yields a slightly lowering of the TIC values.
Especially for short durations, the TIC values are barely
changed. According to TIC, models with covariates in m and s
have been selected for further investigation.
[31] Finally, by using these models 20 year precipitation

return level maps for Belgium can be produced. In Figure 7,
only short durations are considered since daily and two-daily
extremes need to be adjusted (see section 6). The standard
deviation of the error in the return levels is also plotted, which
could be calculated by means of the well-known delta

Figure 6. Estimation of shape parameter g against the
aggregation level d. Model GEV11

(alt).

Table 3. Fitting Results of Equation (18) to Raw Estimations of g, Together With the Standard Errora

1 ≤ d ≤ 1440 (d (min)) 1 ≤ d ≤ 30 (d (days))

a b a b

GEV11
(alt) 0.15482 (0.02918) 0.00633 (0.00590) 0.08282 (0.01316) 0.03372 (0.00597)

GEV11
(mar) 0.14619 (0.02921) 0.00489 (0.00590) 0.08870 (0.01673) 0.03715 (0.00759)

aValues in parentheses are the standard errors.
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method [Coles, 2001]. In short, let Jy ∈ Rnp�np be the
covariance matrix of ŷ , given by equation (11). Then the
MLE of return level z(T) has variance

Jz ¼ rztJyrz; ð19Þ

with

rz ¼ ∂z
∂y1

;…;
∂z
∂ynp

" #t

: ð20Þ

From Figure 7 one observes that the error is not necessarily
larger in higher regions. Indeed, for modelG11

(alt), equation (19)
represents a quadratic form in H that reaches the minimum
around H = 200 m.

5.3. Model Checking

[32] Having fitted a model to a data set, one should eval-
uate how well the method describes or explains the available

data. When dealing with regression plots, the goodness of fit
typically is visually assessed by inspection of various kinds
of residual plots. Concerning the climatological network,
recall that quality assessment of the models is based on a
validation data set (18 in total) and is actually different to the
inference data set.
5.3.1. QQ Plots
[33] In the present context, classical QQ plots are not

useful as the spatial data are not identically distributed. A
possible extension of the classical QQ plots consists in
transforming the data to variables that satisfy the iid property
[Beirlant et al., 2004]. Assume Z(xi) � GEV [m(xi), s(xi), g],
i = 1, …, m. The transformation

R xið Þ ¼ 1

g
log 1þ g

Z xið Þ � m xið Þ
s xið Þ

� �
ð21Þ

results in a Gumbel distributed random variable R(xi)
[Coles, 2001; Beirlant et al., 2004], i.e., F[R(xi) ≤ r] =
exp[�exp(�r)]. The resulting Gumbel distribution does not

Figure 7. (left) Return level maps (mm) for return period T = 20 years. Model GEV11
(alt). (right)

Corresponding standard deviation of the error (see equation (19)).
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any longer depend on the covariates, and hence the random
variable R(xi) =: R is identically distributed. Let n be the total
number of annual maxima of the validation series. Define the
corresponding order statistics by R1,n ≤ … ≤ Rn,n. The
quantile function associated with the Gumbel distribution is
given by

Q pð Þ ¼ �log �log pð Þ; 0 < p < 1; ð22Þ

yielding the Gumbel QQ plot coordinates

�log �log
i

nþ 1

� �
;Ri;n

� �
; i ¼ 1;…; n: ð23Þ

The Gumbel model provides accurate description of the data,
one expects the points on the Gumbel QQ plot to be close to
the first diagonal.
[34] Figures 8 and 9 show Gumbel QQ plots for some

aggregation levels. One can conclude that the GEV regression
models describe the data quite well for lower aggregation

levels. In such a case, Figures 8 and 9 indicate that there is
hardly any difference between GEV11

(alt) and GEV11
(mar). It should

be noted that the QQ plots for daily precipitation in Figure 9
could be misleading. At the first sight, one may conclude that
the models are questionable because of the serious deviation to
the first diagonal when R > 3.1. However, one should take into
account that this includes only 4% of the available data, and the
remaining points closely follow the first diagonal. Still, an
excellent fit to the data is obtained. Differences between the two
models become more apparent for higher aggregation levels.
For d = 10 days, the QQ plot of GEV11

(alt) possesses a systematic
deviation when R > 1, which includes more that 30% of the
data. In contrast, GEV11

(mar) provides an excellent fit.
5.3.2. Hypothesis Testing
[35] At each station, the null hypothesis H0 is proposed

which states that the empirical distribution of annual maxima
is consistent with the spatial GEV model. The null hypoth-
esis is checked by two commonly used statistical tests: the
Pearson’s c2 test and the one-sample Kolmogorov-Smirnov
test. A limitation of the hypothesis testing is that a rejection

Figure 8. Data for short duration times (d = 10 min and d = 1 h): Gumbel QQ plot of the generalized
residuals.
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at some location/duration can also be caused by an insuffi-
ciently good approximation to the GEV distribution by the
validation data.
[36] The number of stations that have accepted H0 at sig-

nificance level 95% is listed for each duration in Tables 4
and 5, and serves as a kind of score of the model. One can
conclude that the spatial GEV models describe the short
duration extremes quite well. The overall performance of
both models is quite similar, as expected. However, the

things change in case of longer aggregation levels, as can be
seen from Table 5. Still, GEV11

(alt) performs acceptable for
aggregation times up to 3 days, but from then, there is a
decrease in model’s performance.

6. Daily Versus 24 h Precipitation

[37] In practice, the GEV distribution of aggregated rain-
fall in time periods with fixed length and arbitrary starting

Figure 9. Data for long duration times (d = 1 and 10 days): Gumbel QQ plot of the generalized residuals.

Table 4. Number of Series That Have Accepted H0 at Significance
Level 95%a

Test

d

10 m 20 m 30 m 1 h 2 h 6 h 12 h 24 h

GEV11
(alt) KS test 14 17 15 15 16 18 17 15

c2 test 16 15 14 16 15 16 16 14
GEV11

(mar) KS test 14 17 16 16 17 18 18 17
c2 test 16 16 14 15 15 17 18 16

aPluviograph data, hydrometeorological network. In total, 18 stations are
tested (see validation stations in Figure 1).

Table 5. Number of Series That Have Accepted H0 at Significance
Level 95%a

Test

d

1 2 3 4 5 7 10 15 20 25 30

GEV11
(alt) KS test 17 16 14 12 12 12 12 12 12 12 14

c2 test 16 17 15 15 11 13 13 12 13 14 14
GEV11

(mar) KS test 17 18 17 18 17 17 18 17 18 18 18
c2 test 16 18 17 16 15 17 16 15 18 18 18

aPluviometer data, climatological network. In total, 18 stations are tested
(see validation stations in Figure 1).
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points are often required, while in many cases data of
observation days (09:00 UTC–09:00 UTC) are available. As
said, the series of daily data is often longer, more reliable and
the network of daily rain gauges is geographically denser.
The question to be answered is if there is a link between the
statistical properties of both types of extremes. Hydrologist
have an empirical solution to this problem, using a scaling
factor (the Hershfield factor) to relate the extremes of the two
variables [see van Montfort, 1990, 1997].
[38] This issue will be placed in a more mathematical

framework. If X(t) is the rainfall intensity at time t, then
Yi =

R
i
i+24h X(t)dt is the aggregated rainfall from time i over

24 h. The annual maxima of 24 h precipitation with arbitrary
starting point, i.e., maxi{Yi}, are called sliding maxima. A
good approximation of sliding maxima can be obtained with
the maximum of 10 min sampled rainfall depths, the m block
maxima beingMm

(24) = max{Y0, Y10,…, Y10(m�1)}. Likewise,
the annual maxima of daily observations areMm

(D) = max{Y0,
Y1440, …, Y1440[(m�1)/144]}. Obviously, one has Mm

(D) ≤
Mm

(24). Denote by G24(x) and GD(x) the GEV distributions of

Mm
(24) and Mm

(D), respectively. A theoretical relation between
the distributions G24(x) and GD(x), based on the extremal
index has been proposed by Robinson and Tawn [2000].
However, in their work the sliding maxima are approximated
by hourly sampling. A suitably adaptation of their relation to
our case results in

G24 xð Þ ¼ GQ
D xð Þ; Q ¼ 144 q24=qD; ð24Þ

where qD and q24 are the extremal indices of (1) daily data
and (2) 24 h data, respectively, obtained by cumulating
10 min data. Straightforward calculations give [Coles, 2001]

m24 ¼ mD � sD

g
1�Qgð Þ; s24 ¼ sDQg : ð25Þ

More generally, one easily shows that the relationship
between the annual extremes of k-daily precipitation (with
sliding period of 24 h) and 24� k-hourly precipitation can be
obtained by replacing D → k D and 24 → 24 k in (24)–(25).
[39] The extremal index q (0 < q ≤ 1) is a quantity which, in

an intuitive way, allows one to characterize the relationships
between the dependence structure of the data and their
extremal behavior. It plays an important role in extreme value
analysis, with q = 1 indicating independence. Remark that
q is concerned with temporal dependence in one series, and
not with spatial dependence between two series, see for
example [Buishand, 1984]. Under some fairly mild condition
(the so-called D(un) condition of Leadbetter et al. [1983]),
the extension of equation (2) to stationary sequences is

Pr Mn � bnð Þ=an ≤ xf g → Gq xð Þ; as n → ∞: ð26Þ

The extremal index can be measured through the size of
clusters of extreme values. A simple way of determining
clusters of extremes is to define a sufficiently high threshold
value u, and define consecutive exceedances of u to belong to
the same cluster. The cluster is terminated when r consecu-
tive values fall below u [Coles, 2001; Beirlant et al., 2004].
The following estimator generally produces good estimates
[Robinson and Tawn, 2000]

q̂ ¼ nc
nu

; ð27Þ

where nu is the number of exceedances of the threshold u, and
nc is the number of clusters above u. For other estimation
methods, see Beirlant et al. [2004]. Careful choices of u and r
are needed, as if r is too small, clusters can be dependent and
if r is too large, nc becomes too small.
[40] The foregoing theory has been applied to the more

than 110 year time series of 10 min rainfall at Uccle (see
section 3.2). First, it is instructive to make a sensitivity
analysis for estimator (27). Figure 10 shows q̂ against the
threshold u for a variety of r values, r = 1, …, 6. In
Figure 10a, the estimations systematically increase until u =
22.0 mm, and hereafter they stay more or less stable. It is
reasonable to choose u in this stable region. Figure 10
clearly shows that for these u values the estimations are
not so sensitive to the selection of r values. Finally, one
arrives at

q̂D ¼ 0:95; q̂24 ¼ 0:011; and thus Q̂ ¼ 144q̂24=q̂D ¼ 1:67:

ð28Þ

Figure 10. Estimation of the extremal index q against
threshold u for different r values.

VAN DE VYVER: SPATIAL PRECIPITATION EXTREMES W09549W09549

12 of 17



As equation (27) shows that the extremal index is inversely
proportional to the amount of extremal dependence, one has
q24 ≪ qD because there is much more serial dependence in
the 10 min sampled 24 h series than in the daily series.
[41] The whole procedure has been repeated to the 10 min

data of the hydrometeorological network (not shown). The
estimations of Q, which mutually differ slightly, have a
mean value of 1.69 and is hardly different of the estimation
(28) obtained from the long-term Uccle series.
[42] Next, when using the long-term Uccle series it can be

examined how well the adjustment in equation (25) works in
practice. Table 6 lists estimations of daily and two-daily
extremes, together with the estimations of 24 and 48 hourly
extremes which are based on (1) daily data (sampled at
09:00 UTC) and (2) direct estimation on aggregated 10 min
data. Denote by m24* and s24* the estimations provided by
equation (25). If one considers m̂ 24 and ŝ 24 as the “true”
parameters of G24(x), one may evaluate the quality of
equation (25) with the “errors” m̂24 � m*24



 

 and ŝ24 � s*24


 

.

The results are promising for daily precipitation as the errors
are around 0.02. For two-daily precipitation, the results are
less good but are still largely acceptable, with errors in m48

and s48 of 0.25 and 0.11, respectively. It should be noted that
m48* and s48* lie in the 95% confidence interval of m48 and
s48. Aggregation levels higher than 2 days are not considered
since there is no strong evidence that m3d and m72 seriously
differ. Finally, return level maps of 24 h and 48 h precipita-
tion are plotted in Figure 11. The calculation of standard
errors slightly differs from section 5.2 and is obtained by
substituting equation (25) into equation (19). Since Q and
model parameters y are not commonly estimated, the stan-
dard errors in Figure 11 cannot account for the uncertainty in
Q, so that one has to assume that Q̂ presents the true value.

7. Conclusions

[43] The introduction of spatial GEV models is twofold.
First, the idea of combining precipitation data at several sites
in one single record, generally called regional frequency
analysis, offers the possibility of getting reliable estimates of
large quantiles. Second, the underlying parameters of the
spatial GEV models are continuous in space, so that they can
provide return levels at every place, even at stationless
regions. The focus was on spatial differences (dependence
on covariates) in the location and scale parameters of the
GEV distribution. It was indeed shown that the shape
parameter exhibits no significant spatial differences. How-
ever, one should take in mind that the present models are
rather simple, and cannot completely explain the large var-
iability in space. Think for instance of the impact of the
urban heat island effect, or differences between precipitation

in the coastal area and inland. Particularly, for durations
smaller than 1 day there are only 18 series available, which
may be insufficient to fully capture the regional differences.
Anyway, the present methodology is still preferable than
using estimations based on one single station for a whole
region.
[44] The models presented in this study correspond to the

cases in which the location and scale parameter are expres-
sed as a linear relationship with a covariate. A comparative
study has been made between models that are characterized
by geographical or climatological covariates. It was difficult
to discern much of a spatial signal in the traditional longi-
tude/latitude space, and seems to inadequately describe
extreme precipitation. Overall, it turned out that mean annual
rainfall (MAR) is the strongest covariate for extreme pre-
cipitation. Beside, it is also likely that elevation has a sig-
nificant influence on the climatological behavior of extreme
precipitation. For short rainfall durations (less than 24 h), it
was demonstrated that the performance of models including
elevation or MAR are more or less equivalent. In conclusion,
the effects not fully described by simple altitude-dependent
relations are rather limited. However, serious discrepancies
between both covariates arise for larger durations. In such
case, models including elevation alone are not sufficient to
explain data variance, and additional topographic aspects or
relief characteristics should be taken into account.
[45] On the basis of foregoing tests, GEV models

depending on MAR/elevation are selected for further
research and practical purposes. Likelihood-based inference
for extreme value models is based on the assumption that the
series are independent. The methodology of R. L. Smith
(unpublished manuscript, 1990b) ignores dependence, but
adjusts inferences for dependence by modifying the estima-
tion error (11). To avoid intersecting GEV distributions, a
suitable function (18) was fitted to raw estimations of g, and
the remaining parameters were then reestimated. It should be
noted that the fitted curves (18) lie within the 95% confi-
dence bounds from the original estimations. The Takeuchi
information criterion (TIC) was used to choose the most
appropriate model. In any case, it was found that models
with a covariate in the location and scale parameter are the
most optimal ones. As expected, adding a covariate to the
location parameter would substantially benefit model’s per-
formance. On the other hand, the effect of introducing a
covariate in the scale parameter is rather limited, especially
for short rainfall durations.
[46] It is tested if the spatial model is consistent with the

empirical distribution of the individual validation sites with
the commonly used Pearson’s c2 test and the Kolmogorov-
Smirnov test. The results of both tests are quite similar.

Table 6. Maximum Likelihood Estimation of the GEV Parameters for Annual Maxima of Daily Data (Sampled at 09:00 UTC) and
24 h Data, Obtained by Cumulating 10 min Data (Long-Term Uccle Series)a

m̂D ŝD ĝD m̂24 ŝ24 ĝ24 m̂24* ŝ24*

29.09 (0.87) 7.81 (0.67) 0.084 (0.090) 33.12 (0.87) 8.18 (0.65) 0.077 (0.069) 33.17 8.15

m̂2D ŝ2D ĝ2D m̂48 ŝ48 ĝ48 m̂48
* ŝ48

*

38.50 (0.99) 9.33 (0.73) 0.084 (0.064) 40.65 (0.99) 9.42 (0.72) 0.059 (0.060) 40.90 9.53

aThe m24* and s24* are obtained with equation (25). Analogously for two-daily versus 48 h data.
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Roughly speaking, for aggregation levels smaller than 3 or
4 days, both models explain a large part of the data variance,
and are acceptable for operational purposes. The performance
of altitude-dependent models is less satisfying for longer
durations, but in contrast, MAR-dependent model are very
promising. Furthermore, the QQ plots confirmed this state-
ment. The validation is not concerned with a comparison of
the model against the truth, which is unknown. Such a proper
validation can be approached by simulation, as by R. L.
Smith (unpublished manuscript, 1990b).
[47] Our models are finalized by accounting for the sam-

pling frequency in daily (09:00 UTC–09:00 UTC) measure-
ments. The transformation (25) of annual daily maxima to
annual sliding 24 h maxima was specified accurately by
estimating the extremal indices qD and q24 from the more than
110 year time series of 10 min rainfall at Uccle. In addition,
the estimations agree, on the average, very well with those
obtained from the hydrometeorological observations.

Figure 11. Return level maps (mm) of 24 h and 48 h precipitation, with return period T = 20 years.
Model GEV11

(alt). Estimations are based on pluviometer data (climatological network), and then adjusted
by equation (25).

Table A1. Estimation Results and Standard Errors for GEV10
(alt) a

d m̂0 (mm) m̂1 (mm/m) ŝ (mm) TIC

Pluviograph Data, Hydrometeorological Network
10 m 6.59 (0.17) 6.65 e-4 (3.8 e-4) 2.60 (0.11) 3304.86
20 m 9.52 (0.24) 0.0011 (5.2 e-4) 3.83 (0.13) 3798.30
30 m 11.16 (0.27) 0.0014 (6.1 e-4) 4.70 (0.12) 4018.94
1 h 14.07 (0.34) 0.0014 (7.4 e-4) 5.21 (0.16) 4190.49
2 h 16.78 (0.38) 0.0032 (9.2 e-4) 5.89 (0.18) 4325.10
6 h 22.10 (0.55) 0.0090 (1.3 e-3) 6.73 (0.24) 4480.94
12 h 26.75 (0.69) 0.0128 (1.6 e-3) 8.10 (0.33) 4697.17
24 h 32.14 (0.83) 0.0197 (2.4 e-3) 9.63 (0.44) 4924.53

Pluviometer Data, Climatological Network
1 day 29.05 (0.58) 0.019 (1.5 e-3) 9.08 (0.35) 22882.82
2 days 38.76 (0.81) 0.027 (2.4 e-3) 11.62 (0.54) 24407.67
3 days 45.14 (0.92) 0.033 (3.2 e-3) 13.01 (0.61) 25015.77
5 days 55.66 (1.25) 0.044 (3.6 e-3) 15.29 (0.64) 25869.67
7 days 64.06 (1.39) 0.054 (3.7 e-3) 16.88 (0.67) 26404.94
10 days 76.42 (1.58) 0.067 (4.7 e-3) 19.60 (0.77) 27303.60
15 days 92.41 (2.01) 0.085 (6.2 e-3) 23.19 (0.96) 28226.97
20 days 107.63 (2.43) 0.098 (6.8 e-3) 27.46 (1.29) 29188.31
30 days 134.40 (2.84) 0.127 (6.8 e-3) 31.98 (1.81) 30139.94

aThe parameter g is given in Table 3.
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[48] This analysis can be extended in several ways. First,
throughout this work it was assumed that there is no tem-
poral dependence in the series. However, nonstationarity is
often apparent in the form of trends, possibly due to long-
term climate changes. Variations in time can be modeled by
introducing time-dependent covariates in the GEV parameters
[Smith, 1989; Coles, 2001; Katz et al., 2002; El Adlouni
et al., 2007]. The number of papers on modeling of spa-
tially dependent nonstationary extremes is very limited, see
for example [Northrop and Jonathan, 2011]. In such a case,
GEV parameters are time and space dependent, providing a
clear view on historical changes in extremes. However,
time-dependent GEV models cannot be used for practical
purposes such as return period estimation. Because our
project is product oriented, only stationary GEV models are
considered. Secondly, seasonal effects are not accounted

for, possibly due to different climate patterns in different
months. Further refinement by modeling seasonal extremes
would be an interesting extension of this study. Finally, the
study was restricted to a limited number of durations ranging
from d = 10 min to d = 30 days. It should be interesting to
provide extreme rainfall intensities for any duration in the
form of intensity-duration-frequency (IDF) relationships. To
our knowledge, IDF curves of spatial extremes were not yet
published in the literature, and might be an interesting option
from which it can be hoped that it broadens the scope of the
actual methodology beyond this current limitation.

Appendix A: Estimation of the Spatial Models

[49] Estimation results of GEV10
(alt), GEV11

(alt), GEV10
(mar)

and GEV11
(mar) are given in Tables A1–A4.

Table A2. Estimation Results and Standard Errors for GEV11
(alt) a

d m̂0 (mm) m̂1 (mm/m) ŝ0 (mm) ŝ1 (mm/m) TIC

Pluviograph Data, Hydrometeorological Network
10 m 6.50 (0.18) 0.0011 (4.7 e-4) 2.48 (0.15) 5.87 e-4 (4.6 e-4) 3302.50
20 m 9.36 (0.26) 0.0019 (6.8 e-4) 3.60 (0.19) 0.0011 (6.1 e-4) 3795.27
30 m 10.97 (0.29) 0.0024 (9.5 e-4) 4.37 (0.20) 0.0017 (9.3 e-4) 4015.16
1 h 13.77 (0.34) 0.0030 (1.3 e-3) 4.78 (0.20) 0.0023 (1.1 e-3) 4184.29
2 h 16.44 (0.40) 0.0051 (1.5 e-3) 5.34 (0.22) 0.0029 (1.2 e-3) 4318.19
6 h 22.01 (0.54) 0.0095 (1.6 e-3) 6.57 (0.41) 8.3 e-4 (1.6 e-3) 4695.41
12 h 26.70 (0.69) 0.013 (1.7 e-3) 8.02 (0.49) 3.8 e-4 (1.6 e-3) 4722.78
24 h 31.74 (0.86) 0.022 (2.4 e-3) 8.84 (0.64) 3.8 e-3 (1.9 e-3) 4918.87

Pluviometer Data, Climatological Network
1 day 28.94 (0.62) 0.020 (1.9 e-3) 8.89 (0.45) 0.0017 (1.4 e-3) 22875.13
2 days 38.46 (0.86) 0.030 (3.0 e-3) 11.01 (0.72) 0.0052 (2.3 e-3) 24382.04
3 days 44.72 (0.98) 0.037 (3.7 e-3) 12.13 (0.81) 0.0073 (2.6 e-3) 24977.63
5 days 55.18 (1.26) 0.048 (4.3 e-3) 14.13 (0.80) 0.010 (3.1 e-3) 25821.24
7 days 63.45 (1.39) 0.060 (4.5 e-3) 15.48 (0.85) 0.012 (3.5 e-3) 26343.49
10 days 75.42 (1.60) 0.076 (5.9 e-3) 17.06 (0.87) 0.021 (4.2 e-3) 27181.50
15 days 91.43 (2.01) 0.094 (7.3 e-3) 20.37 (0.99) 0.024 (4.8 e-3) 28117.66
20 days 106.56 (2.45) 0.107 (8.00 e-3) 23.93 (1.33) 0.029 (5.9 e-3) 29067.82
30 days 133.47 (2.81) 0.135 (8.5 e-3) 27.90 (1.66) 0.034 (8.5 e-3) 30024.33

aThe parameter g is given in Table 3.

Table A3. Estimation Results and Standard Errors for GEV10
(mar) a

d m̂0 (mm) m̂1 (mm/mm) ŝ (mm) TIC

Pluviograph Data, Hydrometeorological Network
10 m 5.07 (0.43) 0.0019 (5.3 e-4) 2.59 (0.12) 3297.52
20 m 7.24 (0.50) 0.0029 (6.3 e-4) 3.82 (0.14) 3791.35
30 m 8.20 (0.65) 0.0038 (8.2 e-4) 4.66 (0.12) 4010.34
1 h 11.46 (0.76) 0.0034 (8.8 e-4) 5.20 (0.16) 4185.74
2 h 12.72 (0.89) 0.0054 (1.0 e-3) 5.87 (0.19) 4318.47
6 h 12.98 (1.39) 0.0126 (1.5 e-3) 6.64 (0.26) 4464.54
12 h 12.87 (1.57) 0.0190 (1.6 e-3) 7.91 (0.36) 4670.59
24 h 10.10 (2.09) 0.0300 (2.5 e-3) 9.27 (0.44) 4880.58

Pluviometer Data, Climatological Network
1 day 9.76 (1.46) 0.0251 (1.6 e-3) 8.92 (0.36) 22794.07
2 days 9.82 (2.29) 0.0376 (2.5 e-3) 11.28 (0.54) 24255.68
3 days 9.43 (2.88) 0.0463 (3.4 e-3) 12.57 (0.61) 24826.62
5 days 9.64 (3.77) 0.0600 (4.2 e-3) 14.79 (0.65) 25654.69
7 days 5.52 (3.66) 0.0761 (4.2 e-3) 16.22 (0.68) 26136.46
10 days 4.53 (4.58) 0.0935 (5.5 e-3) 18.81 (0.79) 27027.75
15 days 3.49 (6.49) 0.1159 (7.8 e-3) 22.29 (0.98) 27936.37
20 days 3.88 (7.45) 0.1352 (9.0 e-3) 26.36 (1.3) 28880.39
30 days �0.03 (7.25) 0.1756 (8.4 e-3) 30.21 (1.9) 29772.03

aThe parameter g is given in Table 3.
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